On Computations with Pulses
نویسندگان
چکیده
We explore the computational power of formal models for computation with pulses. Such models are motivated by realistic models for biological neurons and by related new types of VLSI (``pulse stream VLSI''). In preceding work it was shown that the computational power of formal models for computation with pulses is quite high if the pulses arriving at a computational unit have an approximately linearly rising or linearly decreasing initial segment. This property is satisfied by common models for biological neurons. On the other hand, several implementations of pulse stream VLSI employ pulses that are approximately piecewise constant (i.e., step functions). In this article we investigate the relevance of the shape of pulses in formal models for computation with pulses. The results show that the computational power drops significantly if one replaces pulses with linearly rising or decreasing initial segments by piecewise constant pulses. We provide an exact characterization of the latter model in terms of a weak version of a random access machine (RAM). We also compare the language recognition capability of a recurrent version of this model with that of deterministic finite automata and Turing machines. ] 1999 Academic Press
منابع مشابه
Comparison of the effect of quasitrapezoidal and rectangular pulses on bio- electrical activity, calcium spike properties and afterhyperpolarization potentials of Fl cells of Helix aspersa using intracellular recording
While the effect of changes of stimulus waveform (quasitrapezoidal and rectangular current pulses) on nerve activation is clear, but there is no evidence on the effect of quasitrapezoidal pulses on ionic currents of cellular membrane. In the present study, the effect of depolarizing quasi-trapezoidal current pulses, in comparison with that of depolarizing rectangular current pulses, on firing...
متن کاملPLANE WAVE PROPAGATION THROUGH A PLANER SLAB
An approximation technique is considered for computing transmission and reflection coefficients for plane waves propagating through stratified slabs. The propagation of elastic pulse through a planar slab is derived from first principles using straightforward time-dependent method. The paper ends with calculations of enhancement factor for the elastic plane wave and it is shown that it depends ...
متن کاملPolychronous Wavefront Computations
There is great interest in methods for computing that do not involve digital machines. Many computational paradigms were inspired by brain research, such as Boolean neuronal logic [McCulloch & Pitts, 1943], the perceptron [Rosenblatt, 1958], attractor neural networks [Hopfield, 1982] and cellular neural nets [Chua & Yang, 1988]. All these paradigms abstract biological circuits to artificial neu...
متن کاملMathematical Modeling of Strong Ground Velocity Pulses using Spectral Decomposition and Forward Directivity Effects
Introduction The nature of near-field earthquake records is very complicated and uncertain. Due to this complexity, the prediction of the real structural responses has become very difficult. Based on the analysis of the physical characteristics of near-field records, it is possible to use the simplified mathematical models. Near-field ground motions which are often associated with a progressiv...
متن کاملEffects of intense laser pulse properties on wake field acceleration in magnetized plasma: Half-Sine Shape (HSS) and Gaussian Shape (GS) pulses
In this paper, we have simulated the excitation of wake fields in the interaction of an intensive laser pulses having Half-Sine and Gaussian time envelopes with a fully ionized cold plasma using particle in cell (PIC) method. We investigated the dependency of wake filed amplitude to different laser and plasma parameters such as laser wavelength, pulse duration and electron number density. In ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Comput.
دوره 148 شماره
صفحات -
تاریخ انتشار 1999